MULTI STAGE HIGH SPEED RETARD
(REMOTE / ADJUSTABLE IGNITION TIMING CONTROL)
Part No. 618-3

The Multi Stage High Speed Retard Part No. 618-3 is not legal for sale or use in California on any pollution
controlled motor vehicles.

PARTS LIST:
1 - Multi Stage High Speed Retard (control box)
1 - Velcro™ hook and loop
1 - Terminal, insulated open
1 - Terminal, ring insulated
1 - Terminal, spade
1 - Terminal, male receptacle 1/4”
1 - Terminal, female receptacle 1/4”
1 - Screw, #8 sheet metal
3 - Splice, butt crimp
1 - Magnetic pickup harness (Part No. 29787)

GENERAL INFORMATION
The Multi Stage High Speed Retard is an adjustable
three stage timing retard control. The adjustment
range for the first and second stage is 0°-15° while the
third stage is 0°-20°. Each succeeding stage overrides
the previous stage. Since each succeeding stage
overrides the previous stage, the racer can take out,
or put back in, some ignition timing on a succeeding
stage. This is typically used in drag racing, and
is especially recommended for nitrous oxide
applications. It is not necessary to switch “OFF”
a previous stage for a succeeding stage to override
the previous stage.

The Multi Stage High Speed Retard may be used
with any electronic ignition using one of the Mallory
HYFIRE® Electronic Ignition Controls or any
comparable types of high energy inductive storage or
capacitive discharge ignition control with a point or
electronic ignition amplifier trigger.

NOTE: The Multi Stage High Speed Retard cannot
be used with the Mallory HYFIRE® Electronic
Ignition Control Part No. 29037, point trigger
distributors, semi-even fire engines or odd-fire
engines. The Multi Stage High Speed Retard is not
for marine use.

Spark Plug Wires
To prevent false triggering and the possibility of
premature ignition failures, use suppression type spark
plug wire. Spiral suppression core type ignition wire
is highly recommended, such as Mallory PRO
SIDEWINDER® Ignition Wire.

Electric Welding
Unplug all wires on the control box, and unplug the
distributor harness before any welding is done on the
vehicle.

MOUNTING PROCEDURE
Find a location to mount the control box. The control
box must be mounted away from high heat producing
parts such as headers or coolant lines. The control
box must be mounted where the controls can be
adjusted. Use Velcro™ fastening tape for attaching the
control box to the dash or flat mounting surface.

WIRING PROCEDURE
BLACK WIRE
Connect the BLACK wire to engine or chassis ground.
Use the supplied crimp ring insulated terminal and
sheet metal screw for this if necessary.

RED WIRE
Connect the RED wire to 12-volts from ignition switch.

TRIGGER INPUTS
Magnetic Pickup Connector/Small PURPLE (MAG+)
and small GREEN (MAG−) wires:
If you are using a magnetic pickup, such as a crank
trigger, and the magnetic pickup wires are connected
To the ignition control, transfer the magnetic pickup wires to the magnetic pickup connector (small PURPLE/MAG+ and small GREEN/MAG– wires) on the control box.

If you are using a magnetic pickup, such as a crank trigger, and the magnetic pickup wires are connected to another timing accessory, the magnetic pickup wires shall remain connected to that timing accessory. The magnetic pickup connector on the control box will not be used. Install the female receptacle terminal on the trigger output wire from the timing accessory and connect it to the GREEN (trigger input) wire with the male receptacle terminal.

If you are using an electronic ignition distributor, install the female receptacle terminal on the trigger output wire from the ignition module and connect it to the GREEN (trigger input) wire with the male receptacle terminal.

TRIGGER OUTPUT
Connect the WHITE wire with the female receptacle terminal to the point or electronic ignition amplifier trigger input terminal or wire on the inductive storage or capacitive discharge ignition control.

TIMING RETARD WIRES
Stage-1 ORANGE wire
Stage-2 YELLOW wire
Stage-3 BROWN wire

Each retard circuit activates when connected to a switched 12-volt source and switched “ON.” Many types of switches can be used such as a dash mounted toggle switch, a push button switch on the steering wheel (such as a nitrous system switch), a switch on the transmission shifter or an RPM activated switch. It is not necessary to switch “OFF” a previous stage for a succeeding stage to override the previous stage. When all 12-volt sources for the retard circuits are switched “OFF,” the retard circuits revert to normal ignition timing.
Each retard circuit activates when connected to a switched 12-volt source and switched “ON.” Many types of switches can be used such as a dash mounted toggle switch, a push button switch on the steering wheel (such as a nitrous system switch), a switch on the transmission shifter or an RPM activated switch. It is not necessary to switch “OFF” a previous stage for a succeeding stage to override the previous stage. When all 12-volt sources for the retard circuits are switched “OFF,” the retard circuits revert to normal ignition timing.
Each retard circuit activates when connected to a switched 12-volt source and switched "ON." Many types of switches can be used such as a dash mounted toggle switch, a push button switch on the steering wheel (such as a nitrous system switch), a switch on the transmission shifter or an RPM activated switch. It is not necessary to switch "OFF" a previous stage for a succeeding stage to override the previous stage. When all 12-volt sources for the retard circuits are switched "OFF," the retard circuits revert to normal ignition timing.

FIGURE 2: HYFIRE® VII IGNITION CONTROL; MALLORY UNILITE® DISTRIBUTOR, MAGNETIC BREAKERLESS IGNITION DISTRIBUTOR OR ELECTRONIC ADVANCE DISTRIBUTOR
Each retard circuit activates when connected to a switched 12-volt source and switched "ON." Many types of switches can be used such as a dash mounted toggle switch, a push button switch on the steering wheel (such as a nitrous system switch), a switch on the transmission shifter or an RPM activated switch. It is not necessary to switch "OFF" a previous stage for a succeeding stage to override the previous stage. When all 12-volt sources for the retard circuits are switched "OFF," the retard circuits revert to normal ignition timing.

MAGNETIC PICKUP/Crank Trigger COLOR CODES

<table>
<thead>
<tr>
<th>DISTRIBUTOR TYPE</th>
<th>MAG+</th>
<th>MAG-</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALLORY BELT COMPETITION SERIES</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MALLORY COMP 9000 SERIES</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MALLORY CRANK TRIGGER OR WIRE HARNESS</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MALLORY DISTRIBUTOR WIRE HARNESS</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MALLORY HARNESS</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MSD® CRANK TRIGGER OR WIRE HARNESS</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MSD® CRANK TRIGGER (OLD STYLE)</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MSD DISTRIBUTOR</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MOROSO® CRANK TRIGGER</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>MOROSO® DISTRIBUTOR</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>ACCEL® CRANK TRIGGER</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>CHRYSLER ELECTRONIC DISTRIBUTOR (NON-COMPUTER)</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>FORD DURASPARK DISTRIBUTOR (NON-COMPUTER)</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>GM/DELCO HEI DISTRIBUTOR (NON-COMPUTER)</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>WHITE</td>
<td>GREEN</td>
<td></td>
</tr>
</tbody>
</table>
Each retard circuit activates when connected to a switched 12-volt source and switched “ON.” Many types of switches can be used such as a dash mounted toggle switch, a push button switch on the steering wheel (such as a nitrous system switch), a switch on the transmission shifter or an RPM activated switch. It is not necessary to switch “OFF” a previous stage for a succeeding stage to override the previous stage. When all 12-volt sources for the retard circuits are switched “OFF,” the retard circuits revert to normal ignition timing.