$\because=\mathcal{F}-\int_{\text {Racing Log Book }}$
Event:

RUN	1	2	3	4	5	6	7	8	9	10	11
Time of Day											
Sunny/Cloudy/Dark											
Time Run/Elimination											
Launch RPM											
Delay											
Reaction Time											
60 ft . E.T.											
$330 \mathrm{ft}$. E.T.											
$660 \mathrm{ft}$. E.T.											
$660 \mathrm{ft}$. MPH											
1000 ft . E.T.											
1320 ft. E.T.											
1320 ft. MPH											
60-330 ft. E.T.											
330-660 ft. E.T.											
660-1000 ft. E.T.											
1000-1320 ft. E.T.											
$\begin{array}{r} \text { Dial-In } \\ \text { Actual E.T. } \end{array}$				-		-	-	-		-	- -
Predicted E.T.											
Throttle Stop Setting											
Shift RPM or Setting											
Air Temperature											
Humidity											
Vapor Pressure											
Barometric Pressure											
Air Density											
Corrected Altitude											
Correction Factor											
Track Temperature											
Wind Speed Wind Direction	-	-	-	-	-	-	-	-	-	-	- -
Tire PSI Front Tire PSI Rear		-		-	-	-	-	-	- -	-	- -

\qquad

NOTES	RUN 5			RUN 6			RUN 7			RUN 8		
Engine \# of Runs												
Oil \# of Runs												
Valvelash												
Timing												
Jetting												
Trans \# of Runs												
Shock Settings	Front	Rea		Front	Rear		Front	Rea		Front	Re	
Gear Ratio	Trans	Rear		Trans	Rear		Trans	Rea		Trans		
Tires \# of Runs												
Ballast	Front	Middle	Rear									
Vehicle Weight												

\qquad
\qquad

NOTES		RUN 9		RUN 10			RU			
Engine \# of Runs										NOTES
Oil \# of Runs										
Valvelash										
Timing										
Jetting										
Trans \# of Runs										
Shock Settings	Front	Rear		Front	Rea		Front	Re		
Gear Ratio	Trans			Trans			Trans			
Tires \# of Runs										
Ballast	Front	Midale	Rear	Front	Midale	Rear	Front	Middle	Rear	
Vehicle Weight										

We designed this section to help you utilize this log book in its entirety. In the past we have shared common ranges of change. In today's arena precision is needed and demanded. Therefore, with decades of experience, we have put together some fine tuned tips!

Working with Ratios

Ratios are crucial to know and follow in today's competitive drag racing environment. Ratios can be established for almost any variable, and should. Such ratios to consider include: Corrected altitude ratio, change in humidity ratio, wind speed ratio, throttle stop/timer ratio and reaction time change. Any ratio can be determined by dividing the "change" into the "known".The following examples can be applied.

| 1ST RUN | | | 2ND RUN |
| :---: | :---: | :---: | :---: | CHANGE

Calculated	
Ratio:	$1500 \mathrm{ft} / 5=300 \mathrm{ft}$. Or for every 300 ft . of corrected air change $=.01$ second or $300: 1$

Humidity Change Ratio

E.T.:	8.91 Seconds	8.89 Seconds	.02 Seconds
Humidity:	63%	43%	20%
Humidity			

Humidity Ratio: 20% change equals .02 seconds or 10:1

Wind Speed Ratio

E.T.:	9.93 Seconds	9.88 Seconds	.05 Seconds
Wind:	0 mph	8 mph direct tail	8 mph
Wind Ratio:	$.05 / 8=.00625$ Seconds change per 1 mph Remember to calculate head to tail changes or vise versa. A 4 mph head to a 6 mph tail, equals a 10 mph change.		

Throttle Stop/Timer Ratio

E.T.:	8.87 Seconds	8.93 Seconds	. 06 or 6 Secon
Timer:	2.16 Seconds	2.30 Seconds	14 or 14
Timer Ratio:	$14 / 6=2.33$ numbers. For example, for every .01 of change necessary you will need to factor . 0233 difference in your timer output. You may need to round slightly. For example, the air has changed 900 ft . or .03 seconds. You would compute this as: $3 \times 2.33=6.99$ or 7		

Reaction Time

The change in reaction time is different for everybody. How we see the "light" changes from sunrise, to noon, to night. Cloudy or overcast days can also affect this also. Standard incandescent bulbs to LED bulbs also change your times. Our suggestion is to use this log book to keep superior records and establish your own ratios in all situations.

Track Temperature

Track Temperature is an important key sometimes overlooked when choosing the correct Dial-In or Throttle Stop Setting. Temperatures between 60° and 105° are found to be the most consistent. When you have very cool track temperatures, it is very difficult for the tire to adhere to the track surface. With high heat temperatures, the rubber build-up on the track surface will tend to tear away. Both situations can create tire spin which can lead to inconsistencies. Be sure to add these factors when choosing the Dial-In or Throttle Stop Setting.
Remember. All of the above ratios should be re-checked frequently and consistently. It will become very
common to use many of these ratios together for each run. With hard work and great record keeping, you common to use many of these ratios together for each run. With hard work and great record keeping, you will establish a new-found "respect" with your race car and have the confidence to be "dead-on". Good Luck!

TECH INSPECTION CHECKLIST

COMPETITION LICENSES/ PERMANENT NUMBER

Exp. Date \qquad

- MEMBERSHIP NUMBER

These Log Book pages are available to download for use on your PC, or to be printed off for use in a 3-ring binder at jegs.com/logbook

